Field Journal Note-Catcher

Introduction to the Elements of Field Journals

<table>
<thead>
<tr>
<th>Name of First Book:</th>
<th>Name of Second Book:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What are three things you notice about the drawings?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What are three things you notice about the text?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What are three things you notice about how the pictures and text are connected to each other?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Text Features Venn Diagram

Informational Texts Features of BOTH Field Journal
<table>
<thead>
<tr>
<th>Category</th>
<th>Facts</th>
<th>Questions</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When a city floods, humans stack sandbags and raise levees. When a fire ant colony floods, the ants link up to form a literal life raft. Now, new research shows exactly how the ants manage this feat. Engineering professor David Hu and graduate student Nathan J. Mlot at Georgia Institute of Technology had heard reports of ant rafts in the wild that last for weeks. “They’ll gather up all the eggs in the colony and will make their way up through the underground network of tunnels, and when the flood waters rise above the ground, they’ll link up together in these massive rafts,” Mlot said. The scientists collected fire ants and dunked clumps of them in water to see what would happen. In less than two minutes the ants had linked ‘hands’ to form a floating structure that kept all the insects safe. Even the ants down below can survive this way, thanks to tiny hairs on the ants’ bodies that trap a thin layer of air. “Even when they’re on the bottom of the raft, they never technically become submerged,” Mlot said.
<table>
<thead>
<tr>
<th>Question</th>
<th>Scientific Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Facts about Arthropods Sorted into Categories

Habitat

- Cockroaches live just about everywhere. Some species can become pests in the home where their flattened bodies enable them to hide in narrow crevices, making them difficult to get rid of.
- There are at least 400,000 different kinds of beetle, living everywhere from snowy mountaintops to scorching deserts and muddy ponds.
- Leafcutter ants visit the canopy but live underground in great fungus factories.
- Flies are found all over the world, from the icy polar regions to the equatorial rainforest.

Food

- Adult butterflies and moths feed on liquids, which they suck up through a long, coiled “proboscis.”
- Beetles play an important role in nature by eating dead plants and animals and returning them to the soil as valuable nutrients.
- The South American grasshopper feeds mostly on the leaves, stems, flowers, and fruits of the vegetation in the rainforest. Like other grasshoppers, it chews its food with its powerful mandibles, or jaws.
- The large jaws of the tarantula inject poison into its prey, and as with all spiders, the food is sucked into the body as a liquid.

Behavior

- Under a spider’s abdomen, near the rear, are tiny stubs called spinnerets. The spider uses its legs to pull liquid silk made in its abdomen from the spinnerets.
- The biggest and most complex of insect societies are built by termites. The nests of some species may house up to five million, and are extraordinarily complex buildings, with full air-conditioning.
- The nests built by the common wasp are always begun by a single queen working on her own. She builds a series of papery envelopes from chewed-up wood fibers and lays her eggs inside.
- Most ant species live and work together in big colonies, often building complex nests in which to rear their young.
- Some ants in tropical areas from Africa to Australia build nests in trees by “sewing” together groups of large leaves.
Facts about Arthropods Sorted into Categories

Life Cycle

- Female Mexican bean beetles lay their eggs in groups of about 50 on the underside of leaves, where they are well protected. Each egg stands on end and takes about a week to hatch.
- The most advanced insects, such as butterflies and moths, have a complex life cycle involving complete metamorphosis. The eggs hatch to produce larvae that are quite unlike adult insects in both form and appearance.
- Some spiders protect their eggs in silken egg sacs. The wolf spider carries her egg sac attached to her spinnerets.
- Mosquitoes hatch out of eggs in wet places like ponds or puddles. Baby mosquitoes, or larvae, look like segmented worms about the size of a grain of rice.

Physical Attributes

- Stick insects may be green or brown and are usually long and thin with slender legs and antennae.
- Flies have large compound eyes, and claws and pads on the feet so they can walk on any surface.
- Praying mantises are often slender, like stick insects. Many species are camouflaged in bright greens or dull browns.
- The wings and body of adult butterflies and moths are covered in tiny scales, which are really flattened and ridged hairs.
- Spiders, scorpions, ticks, and mites are all arachnids. They have eight legs and only one or two main body sections. They don’t have antennae.

Predators and Defense

- When some ant species bite, they are able to squirt formic acid from the end of their abdomen into the wound—making it doubly painful.
- Some groups of butterflies feed on rather poisonous plants. As a result, the adult butterflies often taste unpleasant and are avoided by insect-eating birds.
- A tarantula’s bite can be painful, but it isn’t any more dangerous than a bee sting.
- Threatened by a variety of larger insects, birds, and reptiles of the rainforest, the South American grasshopper uses its shape as camouflage. Sometimes it even sways in the breeze to appear even more like a twig or stick.
Ants are common insects, but they have some unique capabilities. More than 10,000 known ant species occur around the world. They are especially prevalent in tropical forests, where they may be up to half of all the insects living in some locations.

Ants look much like termites, and the two are often confused—especially by nervous homeowners. However, ants have a narrow “waist” between the abdomen and thorax, which termites do not. Ants also have large heads, elbowed antennae, and powerful jaws. These insects belong to the order Hymenoptera, which includes wasps and bees.

Enthusiastically social insects, ants typically live in structured nest communities that may be located underground, in ground-level mounds, or in trees. Carpenter ants nest in wood and can be destructive to buildings. Some species, such as army ants, defy the norm and do not have permanent homes, instead seeking out food for their enormous colonies during periods of migration.

Ant communities are headed by a queen or queens, whose function in life is to lay thousands of eggs that will ensure the survival of the colony. Workers (the ants typically seen by humans) are wingless females that never reproduce, but instead forage for food, care for the queen’s offspring, work on the nest, protect the community, and perform many other duties.

Male ants often have only one role—mating with the queen. After they have performed this function, they may die. Ants communicate and cooperate by using chemicals that can alert others to danger or lead them to a promising food source. They typically eat nectar, seeds, fungus, or insects. However, some species have diets that are more unusual. Army ants may prey on reptiles, birds, or even small mammals.

One Amazon species (Allomerus decemarticulatus) cooperatively builds extensive traps from plant fiber. These traps have many holes and, when an insect steps on one, hundreds of ants inside use the openings to seize it with their jaws.
The sting of a bullet ant feels like being shot by a bullet. The sting is extremely painful. They are also called “24-hour ants” because that is how long the pain from their sting can last. According to the book Discover the Amazon, by Lauri Berkenkamp, “Some native Amazonian tribes use the bullet ant as part of a ceremony welcoming young men into adulthood. For example, members of the Satere-Mawe tribe of Brazil put dozens of bullet ants into a woven glove. The boys put on the glove and see how long they can stand to have their hands in it. The longer they keep the glove on, the more they prove their manhood.” (page 23)

Even though bullet ants can cause a lot of pain, they aren’t really aggressive. They only use their stingers to help them gather food, or when their nests are attacked. Just before they sting, they make a noise, “Eep, eep, eep,” and they give off a musky smell. That’s your cue to run!

Bullet ants can grow to be as much as one inch long. They are the largest ants in the Amazon, and one of the most common. They resemble large, wingless wasps.

Bullet ants usually build their nests in and around the big roots of trees, and sometimes in holes in trees.
Here come the army ants. If you are an insect, look out! Thousands of ants may be in the column of raiders that is advancing through the rainforest, pinning down and cutting up every small creature that cannot get away. The swarm changes shape as it advances, but it may fan out as it moves until it is as wide as 100 feet at the front. In the 1930s work done at the Smithsonian Tropical Research Institute pioneered the study of army ant ecology and behavior.

Army ants don’t spend all their time on raids like this. They move through the forest on about a 35-day cycle. They will stay in one place for almost three weeks, sweeping out the area around the always-temporary nest. Eggs are laid during this time. After these eggs hatch, producing larvae, the raids begin—to feed the hungry young.

These raids may last a couple of weeks. When the ants are on a raid, the column advances by during the day. At night, the ants again create their temporary nest called a bivouac. To build the nest the ants hook their claws together so their bodies form a living shield. Inside, the larvae and queen are kept safe. The army ants spend each night that way and then in the morning they move on. Once the larvae change into nonfeeding pupae, the cycle begins again.

This is how army ants make sure that they can successfully raise their young. However, as is typical in rainforests, the lives of other species are connected with those of the ants.

For example, certain kinds of beetles, wasps, and millipedes imitate the smell of the army ants. Ants don’t see well. They communicate with each other mostly by smell. So when these other insects imitate the army ant smell, the ants think these strangers are part of the swarm and do not attack them. That way these other insects can safely do the eating without being army ant prey.

The best known camp followers are the antbirds. Sometimes as many as ten different kinds will follow a column of army ants, flying along the front of it. These birds do not eat the ants, but feed on insects the ants have caught and on insects that are trying to escape from the ants. Some are professional ant followers, highly dependent on swarms and seldom found away from them.

The chain of connection goes even further. There are butterflies that flutter around army ant columns. What they are interested in is the antbirds’ droppings.

Even rainforest people have found ways to use the army ants, some of which have huge pincher-like jaws. These jaws are so big and strong that Indians in South American rainforests sometimes use them to clamp wounds shut, the way our doctors use stitches. (The ant is killed after it has bitten the wound closed.)

Source: Smithsonian Tropical Rainforest Institute. Non-commercial, educational use permitted. See original article at: http://www.stri.si.edu/sites/rainforest/Army_ants.html
These little ants do a lot of big work in the rainforest. You will usually see worker ants following each other single file into and out of their underground nests. Worker ants carry pieces of leaves along well built trails into the nest. A smaller pilot “hitchhiker” ant usually protects the leaf and the worker ant from pesky parasites (wasps, phorid fly). Without the protection from this tiny ant the entire colony could be destroyed due to infestation from parasite eggs. The worker ant carries the leaves to smaller workers, which chew the leaf into smaller pieces, making it all sticky. The sticky leaf mass is then added to the fungus garden that the ant colony eats. The ant needs to defecate (poop) on the leaves in order for the fungus to grow. All of the ants work to take care of the fungus garden, growing fungus just like we grow food. They have help from a bacterium that grows right on their bodies. The bacterium protects the garden from disease. These ants are very sensitive about the needs of their gardens and “talk” to them with chemical signals. They are very important to the rainforest ecosystem.

Source: https://www.msu.edu/user/urquhart/rainforest/Content/Army-Ants.html#LC. The Virtual Rainforest by Gerald Urquhart Copyright Gerald R. Urquhart, Michigan State University. Students and teachers have permission to quote text and use images from this website in class assignments. Images may be used in classroom and academic presentations with notification of author. All other use should request permission.
BUTTERFLY GROUP

1. Examine the graphic illustrating the life cycle of a butterfly.
2. Talk with others in your expert group about how to summarize the information.
3. Write a summary in your own C/F/Q/R Note-catcher.
4. List the category from the seven identified in Lesson 6 in the Category column (i.e., habitat, defense).
This lesson references an article written by entomologist Adrian Hoskins, and is available on his website at: http://www.learnaboutbutterflies.com/Rainforests.htm. Expeditionary Learning is seeking permission for this material. We will post an updated version of the lesson once permission is granted.

(Reference the first paragraph of the article, which begins with “It is 6:00 a.m...” and ends with “...a chance to escape.”)

STOP AND TALK:
What is the main idea of this paragraph?
What have you learned about the way some butterflies defend themselves against enemies?
On your C/F/Q/R Note-catcher, record your note in the “FACTS” column. Then in the “CATEGORY” column, write which category this fact belongs in.

(Reference the second paragraph of the article, which begins with “Every butterfly species...” and ends with “...beneath another nearby leaf.”)

STOP, TALK, and WRITE:
What is the main idea of this paragraph?
What new information have you learned about the way some butterflies defend themselves against enemies? Record your note in your C/F/Q/R Note-catcher, and text code it for the category it belongs in.

(Reference the third paragraph of the article, which begins with “We come to a small glade...” and ends with “...shimmering blue spots.”)

STOP, TALK, AND WRITE:
What is the main idea of this paragraph?
What new information have you learned about what some butterflies eat?
On your C/F/Q/R Note-catcher, record your note in the “FACTS” column. Then in the “CATEGORY” column, write which category this fact belongs in.

(Reference the fourth and fifth paragraphs of the article, which begins with “11:00 a.m...” and ends with “...and praying mantises.”)

STOP AND TALK:
How do you think the author is feeling? What words in the text support your opinion?
STOP, TALK, AND WRITE:
Describe where the author goes in this paragraph.
What new information have you learned about where some butterflies live?
On your C/F/Q/R Note-catcher, record your note in the “FACTS” column. Then in the “CATEGORY” column, write which category this fact belongs in.

STOP, TALK, AND WRITE:
What animals other than butterflies does the author write about in this paragraph?
What new information have you learned about what some butterflies do?
On your C/F/Q/R Note-catcher, record your note in the “FACTS” column. Then in the “CATEGORY” column, write which category this fact belongs in.

STOP AND TALK:
What kind of animal is an anaconda? How do you know from the text what kind of animal it is?
Task Card:
“Rainforest: The Most Precious Environment on Earth”

AFTER the teacher reads “Rainforest: The Most Precious Environment on Earth”:

Work with your expert group members to:

1. Reread the article one section at a time, stopping at the points indicated in the text.

2. Talk about the main idea of each section of text.

3. Write a note in your C/F/Q/R Note-catcher, for each section of text.
BULLET ANTS GROUP

PART I:

1. Prepare to participate with other groups in a Jigsaw discussion (using the **Jigsaw protocol**) about the information you learn about bullet ants.

2. Read the article about bullet ants, independently. Use the following process as you read:
 - A. Stop at the end of each paragraph.
 - B. Think about the main idea of each paragraph.
 - C. Circle words that helped you understand the main idea (scientific and academic).
 - D. Try to figure out the meaning of key words from context or by breaking them apart into known words.

PART II:

1. After you have finished reading independently, talk with your group members about:
 - A. The main idea of the article, and
 - B. The meaning of **key words**.

2. Work with your expert group members to:
 - A. Choose five key words from the reading that help convey the gist of the article.
 - B. Assign one member of your group to record the five key words at the top of your chart paper.
 - C. Discuss the five key words, and then write a draft of your gist statement on lined paper.
 - D. Refine and finalize the *gist statement*, and then have one member of your group write the statement on your chart paper.

PART III:

1. Record new information you learned about bullet ants into your C/F/Q/R Note-catcher.
2. Add one **academic word** and one **scientific word** to your glossary.
Butterfly Life Cycle

Metamorphosis of a Monarch Butterfly

Egg
- The adult female lays an egg that was fertilized by the male.

Larva = Caterpillar
- The egg hatches into a tiny larva (caterpillar).
- The caterpillar eats and grows a tremendous amount.
- The caterpillar attaches itself to a twig and forms a hard outer shell.

Pupa = Chrysalis
- Inside the pupa, the caterpillar changes into a butterfly. Pupas are often camouflaged to hide from predators.

Adult = Butterfly
- Adults live for only a short time. They cannot eat; they only drink through their straw-like spiral proboscis. They will fly, mate, and reproduce.
The life cycle of the ant has four stages: egg, larva, pupa, and adult. Fertilized eggs produce female ants (queens, workers, or soldiers); unfertilized eggs produce male ants. The worm-like larvae have no eyes and no legs; they eat food regurgitated by adult ants. The larvae molt (shed their skin) many times as they grow. After reaching a certain size, they spin a silk-like cocoon (against a solid object, like the wall of the chamber) and pupate. During this time the body metamorphoses (changes) into its adult form. The pupa emerges as an adult. The entire life cycle usually lasts from 6 to 10 weeks. Some queens can live over 15 years, and some workers can live for up to 7 years.
PART I: Graphic “Life Cycle of an Ant”
1. Study the graphic (illustration) of the life cycle of an ant (1–2 minutes).

2. Talk with your group members about the fact(s) you were able to learn from the graphic.

3. Discuss the words you would use to make a note about the fact(s) you learned from the graphic.

4. Record the fact(s) in the F column of your C/F/Q/R Note-catcher.

5. In the C (Category) column of your Note-catcher, write the text code for the kind of information you are recording (L for Life Cycle).

6. Write a gist statement about what this graphic is mostly about.

PART II: Text “Life Cycle”
AFTER writing your gist statement about the graphic:

1. Read the text “Life Cycle,” which accompanied the graphic you just studied.

2. Think about and discuss: How are the graphic and the text connected?

3. Add new information you learn from the text to your C/F/Q/R Note-catcher.
Monarch butterflies are known for the incredible mass migration that brings millions of them to California and Mexico each winter. North American monarchs are the only butterflies that make such a massive journey—up to 3,000 miles (4,828 kilometers). The insects must begin this journey each fall ahead of cold weather, which will kill them if they tarry too long.

Monarch butterflies begin life as eggs and hatch as larvae that eat their eggshells and, subsequently, the milkweed plants on which they were placed. (Monarchs are dependent on milkweed plants, which larvae eat nearly exclusively.)

Fattening larvae become juicy, colorful caterpillars, then create a hard protective case around themselves as they enter the pupa stage. They emerge as beautifully colored, black-orange-and-white adults. The colorful pattern makes monarchs easy to identify—and that’s the idea. The distinctive pattern warns predators that the insects are foul tasting and poisonous.

Butterflies that emerge from chrysalides (pupa state) in late summer and early fall are different from those that do so during the longer days and warmer weather of summer. These monarchs are born to fly, and know because of the changing weather that they must prepare for their lengthy journey.

Only monarchs born in late summer or early fall make the migration, and they make only one round trip. By the time next year’s winter migration begins, several summer generations will have lived and died and it will be last year’s migrators’ great grandchildren that make the trip. Yet somehow these new generations know the way, and follow the same routes their ancestors took—sometimes even returning to the same tree.

Many scientists are concerned about the eastern population of monarchs, which summer east of the Rocky Mountains. This group is occurring in ever smaller numbers, and its survival may be threatened by a series of natural disasters in the Mexican wintering grounds, as well as by reduced acreage of milkweed plants in their summer home.

Note: This image and text are reproduced with permission from National Geographic from their website: http://animals.nationalgeographic.com/animals/bugs/monarch-butterfly/?source=A-to-Z. On the website itself, there is also a small map and some “fast facts” that are difficult to reproduce. To view these, go directly to the link above.
PART I: Graphic
1. Study the graphic (illustration) of the life cycle of an ant (1–2 minutes).

2. Talk with your group members about the fact(s) you were able to learn from the graphic.

3. Discuss the words you would use to make a note about the fact(s) you learned from the graphic.

4. Record the fact(s) in the F column of your C/F/Q/R Note-catcher.

5. In the C (Category) column of your Note-catcher, write the text code for the kind of information you are recording (L for Life Cycle).

6. Write a gist statement about what this graphic is mostly about.

PART II: Text
1. Follow along silently as your teacher reads the text aloud.

2. Reread the text independently, to determine the gist.

3. Discuss the gist of this text with your group members.

4. Follow along silently as the teacher reads the text aloud one more time. Determine the meaning of the following words using context clues:
 - Paragraph 1: migration, massive
 - Paragraph 2: subsequently, dependent, exclusively
 - Paragraph 3: protective, distinctive
 - Paragraph 4: chrysalides
 - Paragraph 5: generations, ancestors
 - Paragraph 6: population, occurring, survival

5. Locate ONE fact about how monarch butterflies defend themselves against predators. Share out with your group.
6. Record the fact in the F column of your C/F/Q/R Note-catcher.
Mid-Unit 3 Assessment:
On-Demand Note-Taking about Howler Monkeys

Directions:

PART I: Text, Facts about Howler Monkeys (20 minutes)
• Read the text independently, and take notes about the information you learn.
• Draw a line below your notes.

PART II: Video, “Howler Monkey” (10 minutes)
• Watch the video once, listening carefully for new information. DO NOT take notes during the first viewing.
• Watch the video a second time. The teacher will pause the video every 20 seconds to help you take notes about the new information you see and hear.
• Draw a line below your notes.

PART III: Webpage, Howler Monkey (10 minutes)
• Look at the PICTURE. Record anything you notice about howler monkeys from the picture.
• Read the CAPTION, and add new information that you learn to your notes.
• Study the MAP and FAST FACTS. Add new information that you learn to your notes.

Criteria:
• Notes contain information about howler monkeys from three different sources (text, video, and webpage).
• The information in notes is accurate.
• The notes are organized in a logical way.
• Notes include quotes and paraphrased information from each of the three sources.
Howler monkeys are the loudest of all monkeys. They call to let others know where their territory is, alerting them to stay away. The calls sound like a loud whooping bark or roar. After one group of howlers call, another group answers.

Howler monkeys usually sound their calls in the morning and at the end of the day, so all the howlers in the vicinity know where each group’s territory lies. One howler group doesn’t generally want to come in direct contact with other groups.

These monkeys live in Central and South America. At home in the forest, they hardly ever leave the treetops. Howlers mainly eat leaves, as well as fruits, nuts, and flowers. They don’t move very far each day, feeding leisurely at the very top of the forest canopy. They’re hard to spot from the ground, but they can certainly be heard when they call.

Howler monkeys get almost all the water they need from the food they eat. One of the few times they can be spotted on the ground, however, is during very dry spells when they need to find extra water. Howler monkeys have prehensile tails, or tails that can grip. The monkeys use their tails as a fifth limb to grip branches.

The tops of the tails are furry; the undersides are not. The lack of fur underneath gives the monkeys’ tails a better grip. A howler’s tail is strong enough to hold its entire weight, but the animal rarely hangs from branches by its tail. Mostly it uses its tail to help grip branches as it eats and moves around high in the trees.

These monkeys live in family groups made up of males, females, and young. The number in the group varies, but a troop is generally made up of 15 to 20 howlers. As they move from tree to tree, they stick together as a family. The leader is usually an old male.

© National Geographic. Used by permission. Source: “Facts About Howler Monkeys” by National Geographic Staff for National Geographic Kids Online.
Source 2: Howler Monkey (video)

http://video.nationalgeographic.com/video/animals/mammals-animals/monkeys-and-lemurs/monkey_howler/

© National Geographic. Used by permission. Source: “Howler Monkey, Animals Online” by National Geographic staff.
Howlers are New World monkeys found in tropical Central and South America. They are aptly named for their cacophonous cries. When a number of howlers let loose their lungs in concert, often at dawn or dusk, the din can be heard up to three miles (five kilometers) away. Male monkeys have large throats and specialized, shell-like vocal chambers that help to turn up the volume on their distinctive call. The noise sends a clear message to other monkeys: This territory is already occupied by a troop.

These vocal primates are the biggest of all the New World monkeys. Unlike Old World monkeys, howlers and other New World species have wide, side-opening nostrils and no pads on their rumps. Howlers also boast a prehensile tail. They can use this tail as an extra arm to grip or even hang from branches—no Old World monkeys have such a tail. A gripping tail is particularly helpful to howler monkeys because they rarely descend to the ground. They prefer to stay aloft, munching on the leaves that make up most of their diet.

Howler monkeys have beards and long, thick hair which may be black, brown, or red. The red howler species is the most common, but it is often targeted by hunters eager for bushmeat. Other species of howler monkey may be critically endangered over sections of their ranges.

(1080L)
Learning Target: I can use three different sources to find information about howler monkeys.

1. The target in my own words is:

 __
 __
 __
 __

2. How am I doing? Circle one.

 [] I need more help to learn this [] I understand some of this [] I am on my way!

3. The evidence to support my self-assessment is:

 __
 __
 __
 __
Learning Target: I can record my information about howler monkeys in an accurate and organized way.

1. The target in my own words is:

__
__
__

2. How am I doing? Circle one.

I need more help to learn this

I understand some of this

I am on my way!

3. The evidence to support my self-assessment is:

__
__
__
__
Science Talk Note-Catcher

Question:

<table>
<thead>
<tr>
<th>NOTES</th>
<th>GIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Informational Texts</td>
<td>What my partner said...</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28
I can write a field journal entry from the point of view of a rainforest scientist.
I can use my notes to write a field journal entry that includes details about ants or butterflies.

<table>
<thead>
<tr>
<th></th>
<th>3 I met the target!</th>
<th>2 I’m on my way.</th>
<th>1 I’m getting started.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The name of my character will be:

Characteristics of my Character and Setting for my Journal Entry:

<table>
<thead>
<tr>
<th>Event</th>
<th>Information from My Research That I Will Include</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I can write a field journal entry from the point of view of a rainforest scientist.
I can use my notes to write a field journal entry that includes details about ants or butterflies.

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideas</td>
<td>I met the target!</td>
<td>I’m on my way.</td>
<td>I’m getting started.</td>
</tr>
<tr>
<td>Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One compliment I heard from my peer:

One question from my peer:

One suggestion from my peer:
Your text box will only be this big, so make sure that you only include the most important information about your insect

<table>
<thead>
<tr>
<th>Name of your insect:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Rainforest Ecosystem:</td>
</tr>
<tr>
<td>Physical Characteristics:</td>
</tr>
<tr>
<td>Food Sources:</td>
</tr>
<tr>
<td>Predators:</td>
</tr>
<tr>
<td>Life Cycle:</td>
</tr>
<tr>
<td>Defenses:</td>
</tr>
<tr>
<td>Behavior</td>
</tr>
<tr>
<td>Habitat:</td>
</tr>
</tbody>
</table>
“A drawing can do much more than a photograph to emphasize the field marks. A photograph is a record of a fleeting instant; a drawing is a composite of the artist’s experience. The artist can edit out, show field marks to best advantage, and delete unnecessary clutter. He can choose position and stress basic color and pattern unmodified by transitory light and shade. A photograph is subject to the vagaries of color temperature, make of film, time of day, angle of view, skill of the photographer and just plain luck. The artist has more options and far more control even though he may use photographs for reference... Whereas a photograph can have a living immediacy a good drawing is really more instructive.”

Directions

- Start by working on any of the three components of the project you want.
- Use the checklist to keep track of what you have done and what you still need to do.
- Manage time so you can to finish all components by the end of the lesson.
- If you need feedback from a peer or teacher who is busy, tell that person you’re ready, but then work on something else while you’re waiting.
- When you finish a task, put your initials in the box.

<table>
<thead>
<tr>
<th>Field Journal Entry</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write a first draft of my journal entry.</td>
<td></td>
</tr>
<tr>
<td>Review my draft against our rubric and make changes.</td>
<td></td>
</tr>
<tr>
<td>Have another student give me feedback on my first draft. Ask the other student to put his or her initials in the box when done.</td>
<td></td>
</tr>
<tr>
<td>Write a revised draft.</td>
<td></td>
</tr>
<tr>
<td>Receive feedback from the teacher. Ask the teacher to put his or her initials in the box when you are done.</td>
<td></td>
</tr>
<tr>
<td>Write a final draft.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Informational Text Box</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write a first draft of my text box in the Informational Text Box graphic organizer.</td>
<td></td>
</tr>
<tr>
<td>Have another student give me feedback on my first draft. Ask the other student to put his or her initials in the box when done.</td>
<td></td>
</tr>
<tr>
<td>Write a revised draft in a new Informational Text Box graphic organizer.</td>
<td></td>
</tr>
<tr>
<td>Receive feedback from the teacher. Ask the teacher to put his or her initials in the box when you are done.</td>
<td></td>
</tr>
<tr>
<td>Write a final draft in a new Informational Text Box graphic organizer.</td>
<td></td>
</tr>
</tbody>
</table>
Scientific Drawing

<table>
<thead>
<tr>
<th>Activity</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use a 3"x5" index card to draw a first draft of my scientific drawing in pencil.</td>
<td></td>
</tr>
<tr>
<td>Have another student give me feedback on my first draft. Ask the other student to put his or her initials in the box when done.</td>
<td></td>
</tr>
<tr>
<td>Draw a revised draft on a new index card in pencil.</td>
<td></td>
</tr>
<tr>
<td>Receive feedback from the teacher. Ask the teacher to put his or her initials in the box when you are done.</td>
<td></td>
</tr>
</tbody>
</table>

Publication

<table>
<thead>
<tr>
<th>Activity</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type up your narrative on a computer or rewrite it onto a blank sheet of unlined paper. Be sure to copy your text exactly; don’t add any errors to your error-free final draft!</td>
<td></td>
</tr>
<tr>
<td>Tape or glue the final draft of your text box and drawing on to a sheet of unlined paper.</td>
<td></td>
</tr>
</tbody>
</table>
End of Unit Assessment:
Writing a Rainforest Field Journal Entry about Howler Monkeys

It is time to show what an expert you have become on researching and reporting on rainforest animals. So put on your rainforest explorer gear and get ready to roll! After researching scientific texts on howler monkeys, write a page from a field journal that describes howler monkeys and how they contribute to the rainforest ecosystem. Support your discussion with evidence from your research. Be sure you include precise scientific vocabulary and sensory details. Use our Rainforest Field Journal Entry rubric to guide your work.

Directions:
1. If you need to, reread the article on howler monkeys from our mid-unit assessment.
2. Read over the notes you took on howler monkeys during our mid-unit assessment.
3. Based on the article and your notes, write a new first-person field journal entry from the point of view of the same main character as in your first rainforest field journal entry. Describe at least one event in your field journal entry.
4. Create an informational text box about the howler monkey to go with your field journal entry.
Learning Target: I can write a field journal entry about howler monkeys using ideas, organization, language, and use of conventions that meet our rubric for quality.

1. The target in my own words is:

__

__

__

2. How am I doing? Circle one.

I need more help to learn this I understand some of this I am on my way!

3. The evidence to support my self-assessment is:

__

__

__

__
Tracking My Progress

Name: __________________________
Date: __________________________

Learning Target: I can summarize the most important information about howler monkeys in a text box.

1. The target in my own words is:

__
__
__

2. How am I doing? Circle one.

- I need more help to learn this
- I understand some of this
- I am on my way!

3. The evidence to support my self-assessment is:

__
__
__
__

End of Unit 3
Equal Opportunity Notice
CA BOCES hereby advises students, parents, employees and the general public that it offers employment, programs and educational opportunities, including vocational education opportunities, without regard to gender, race, color, national origin, handicap or any other legally protected status. Inquiries regarding this non-discrimination policy and grievance procedures may be directed to:
Human Resources Director, Cattaraugus-Allegany BOCES, 1825 Windfall Road, Olean, NY 14760; 716-376-8237.